

    
      
          
            
  
Welcome to the MAAP User Documentation!



	Getting Started

	Science Examples

	Technical Tutorials

	System Reference Guide







Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Getting Started


Getting Started:


	About the Multi-Mission Algorithm and Analysis Platform (MAAP)

	An overview of the MAAP platform

	Setting up your account and workspace
	Signing up for an Earthdata Login account

	Signing up for a new MAAP account

	Logging in

	Creating a workspace

	Jupyter Interface overview

	MAAP Storage Options





	Writing code with MAAP
	Using maap.py to access MAAP functionality from Python notebooks

	Helpful Templates while developing Algorithms in MAAP

	Working with code repositories like GitHub and GitLab

	Customizing your workspace environment





	Running Algorithms at Scale
	Register an Algorithm

	Run the Algorithm as a Job and Monitor it












          

      

      

    

  

    
      
          
            
  
About the Multi-Mission Algorithm and Analysis Platform (MAAP)

The MAAP platform is designed to combine data, algorithms, and computational abilities for the processing and sharing of data related to NASA’s GEDI, ESA’s BIOMASS, and NASA/ISRO’s NISAR missions. These missions generate vastly greater amounts of data than previous Earth observation missions. There are unique challenges to processing, storing, and sharing the relevant data due to the high data volume as well as with the data being collected from varied satellites, aircraft, and ground
stations with different resolutions, coverages, and processing levels.

MAAP aims to address unique challenges by making it easier to discover and use biomass relevant data, integrating the data for comparison, analysis, evaluation, and generation. An algorithm development environment (ADE) is used to create repeatable and sharable science tools for the research community. The software is open source and adheres to ESA’s and NASA’s commitment to open data.

NASA and ESA are collaborating to further the interoperability of biomass relevant data and metadata. Tools have been developed to support a new approach to data stewardship and there is a data publication workflow for organizing and storing data and generating metadata to be discoverable in a cloud-based centralized location. The platform and data stewardship approaches are designed to ease barriers and promote collaboration between researchers, providers, curators, and experts across NASA
and ESA.

This guide aims to help users get started with using the platform for searching, visualizing, accessing, processing, querying, and sharing biomass relevant data to the MAAP. These data, collected from satellites, aircraft, and ground stations, are organized into collections and granules. Collections are a grouping of files that share the same product specification. Granules are the individual files which are independently described, inventoried, and retrieved within a collection. Granules
inherit additional attributes from their containing collection. Explanations of the various functions available in MAAP to use in the ADE will also be explored.




          

      

      

    

  

    
      
          
            
  
An overview of the MAAP platform

The MAAP is a cloud-based system to write science-analysis code and then run it at scale. This lets you keep all of the input and output data “in the cloud”. It is composed of a few parts:

[image: MAAP Overview Diagram]


	The Algorithm Development Environment (ADE) is a tool that helps with the development of algorithms in a consistent, standardized environment that helps with the development and testing of algorithms and facilitates large scale data processing. MAAP’s primary user interface is Jupyterlab, where code is written and tested before pushed to the large scale data processing system. Code is stored and checked out from Git-based repositories, including Github and MAAP’s own code repository
subsystem.


	The Data Processing System (DPS) is where registered algorithms (see Algorithm Catalog) can be run at scale in the cloud. The MAAP system provides a Jupyter GUI to run Jobs, or the maap.py library can be used to run a batch of Jobs in a loop using Python. The DPS also has monitoring capabilities, and again the MAAP system provides a Jupyter GUI to help monitor Jobs. This can also be done using maap.py in Python.


	The Algorithm Catalog, where your algorithms from the ADE can be registered and compiled for use by the DPS. The MAAP system provides API and GUI tools to help you register and view your algorithms.


	The Code Repository is a git-based repository to store user code. It is also used to store the configuration files necessary for building algorithms to store in the algorithm catalog and for execution in the DPS.


	Input data comes from a few Data Catalogs. Currently there is a MAAP STAC Catalog [https://stacspec.org/en/about/] and the NASA CMR Catalog [https://www.earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/cmr]. More information can be found in the search tutorials section [https://docs.maap-project.org/en/latest/technical_tutorials/search/catalog.html].







          

      

      

    

  

    
      
          
            
  
Setting up your account and workspace

Learn how to sign up for an account and access the MAAP.


Signing up for an Earthdata Login account

The MAAP offers accounts for NASA users through Earthdata Login [https://urs.earthdata.nasa.gov/]. Before accessing the MAAP as a NASA user, you will need to create an Earthdata Login account. Anyone can register for an Earthdata Login profile here: https://urs.earthdata.nasa.gov/users/new.



Signing up for a new MAAP account

Once registered, you can register for a MAAP account by navigating to the MAAP ADE at http://ade.maap-project.org. On your first visit, select the “URS” login button shown here:

[image: ADE Login]

If this is your first visit to the MAAP, you will be asked to agree to the MAAP Terms of Use:

[image: MAAP Terms of Use]

Once registered, you should be redirected back to the MAAP ADE showing a disabled account message similar to this:

[image: ADE Access Denied]

At this point, a MAAP administrator will approve your account, which will grant you access to the MAAP ADE. Access is only granted to known users in the biomass science community and other projects directly related to MAAP. To check on the status of your pending account, contact the MAAP team at support@maap-project.org.


Note

Once your MAAP account is approved, you will receive an email notification using the address of your Earthdata Login account to let you know that your access is enabled.





Logging in


	Navigate to https://ade.maap-project.org/ in Chrome or Firefox. You should be redirected to a page that looks like this: [image: MAAP Project log in]


	Click the “Login with EarthData Account” button. If this is your first time logging in, you should be redirected to an EarthData Login page that looks like this: [image: Login with EarthData]


	Enter your “EarthData Login” account credentials here and click “Log in”. You should see a temporary page that says “Redirecting”, followed by the MAAP showing your Workspaces (which will be empty to start): [image: MAAP Jupyter logging in]






Creating a workspace

Workspaces are effectively a JupyterLab “computer in the cloud”. To get started with Jupyter you need to create a workspace.


	In the top-left corner of the MAAP dashboard, under “NASA MAAP”, click “Get Started”. You should see a menu that looks like this: [image: Choose a workspace stack]


	Select “Basic Stable”. This is called a “Stack” and represents a type of cloud compute environment that will be set up. If you are interested in seeing more about each Stack, the adjacent link in the left-hand area is where you can see the configuration of each Stack in detail. After choosing “Basic Stable”, you will see a loading screen that looks like this – wait for it to finish loading. [image: Loading Basic Stable]


	Once the workspace has loaded, you should see a Jupyter interface that looks like this (note: You will see fewer environments and items in your root directory — this is normal! You may also see some notifications in the bottom right that look like errors about SSH Keys and other things; that is normal as well. You will also see one asking if you would like to take a guided tour.). [image: New Workspace View]






Jupyter Interface overview

When you first log in you may see a notification in the bottom right about a guided tour. Feel free to view the tour, which will give you a quick overview of the Jupyter user interface. You can also find the MAAP Tour in the Help menu at any time. [image: MAAP Tour Notification]

In addition to typical JupyterLab menu bar and sidebar [https://jupyterlab.readthedocs.io/en/stable/user/interface.html] configuration:


MAAP Jupyter Menus

[image: Jupyter Menus]


	Git: Open repo in terminal, init, or clone repo.


	Jobs: Users may submit jobs through the submit tab and view their jobs through the view tab.


	Help: The help menu has several customized extensions and references to the MAAP documentation.






MAAP Jupyter Sidebar

[image: Jupyter Sidebar]


	File Browser


	Running Terminals & Kernels


	Git Repo Interface (if this folder is a Git repo)


	Collaborators


	Table of Contents


	Extension Manager






MAAP Blue Sidebar


	Workspaces: See workspaces, share them, as well as configure settings


	Stacks: See available platforms for workspaces & required memory


	Administration: Control the configuration & policies for your installation.


	Organizations: allow groups of developers to collaborate with private & shared workspaces. Resources & permissions are controlled & allocated within the organization by admin.


	Profile (bottom, labeled with your name): See account info, logout







MAAP Storage Options

[image: Jupyter annotated folders]


My root folder (fast cloud storage)


	Your Jupyter home directory (~) is mounted to /projects. Files in here persist across sessions and exist across your workspaces.


	Use this for code-related items, smaller data storage


	Git is more likely to behave predictably here compared to other storage


	This is also the place to make persistent conda environments (covered in another section), but make sure to not make a conda env inside a git-tracked folder, or if you do add it to the .gitignore. If git is tracking an env, it could cause your workspace to crash.






	Uses local (to Jupyter) file system; generally faster and more reliable for “normal” file operations, but expensive






Large file storage: my-private-bucket

~/my-private-bucket is an S3 bucket with persistent storage, but accessible only to you and others in a shared workspace.


	Use for large data storage


	It will be slower than the root folder to copy and move files, which is why it is not ideal for storing smaller files that need to be read or written quickly






Sharing files: my-public-bucket and shared-buckets

~/my-public-bucket is an S3 bucket with persistent storage. It is the same as ~/shared-buckets/<my_username>/ — anything you put in here will be accessible to other users via ~/shared-buckets/<my_username> as a read-only file. Likewise, to find shared files from another user, look in ~/shared-buckets/<their_username>.


	Use for large data storage for files that you want to share across workspaces




[image: Storage options diagram]



Mounting your MAAP workspace on your local computer

If you prefer to work on your local computer, or to drag-and-drop copy files from your computer to/from MAAP, you access the workspace via SSH. The process for doing this is in the system guide.






          

      

      

    

  

    
      
          
            
  
Writing code with MAAP

Writing and editing code in the MAAP is done in a Jupyter workspace. To assist connections to the MAAP system from a Jupyter notebook, a helper library called maap.py provides Python-native calls to the underlying MAAP API.

Code is version-controlled using git, which may be GitHub or MAAP GitLab. Jupyter also provides a GUI widget to help with code push/pull as a sidebar tool. Git is intended to help with collaborative code development; Algorithms run at scale in the MAAP must first be pushed to the MAAP GitLab in order to facilitate registration.

If you have not used Github or git before, it is highly recommended that you get acquainted with it [https://docs.github.com/en/get-started/quickstart/hello-world]. For a quick reference to git commands there is a Git Cheat Sheet [https://training.github.com/] in a variety of languages.

[image: Writing code overview in context diagram]


Using maap.py to access MAAP functionality from Python notebooks

The MAAP platform offers a variety of functionality. Access to the functionality is gained via the underlying MAAP API [https://api.maap-project.org/api/]. In a Python notebook, you will typically use this API via a helper library called maap.py, which will make using MAAP platform features easy, using Python syntax. For example, registering algorithms, running batches of jobs, monitoring jobs, or accessing data.

Much of the maap.py functionality is documented in the Technical Tutorials section and in-context in the Science Tutorials. The maap-py Github page [https://github.com/MAAP-Project/maap-py] has additional usage documentation.



Helpful Templates while developing Algorithms in MAAP


	This algorithm repository example [https://github.com/MAAP-Project/dps-unit-test] is a good starting point for a new algorithm, as it contains the various accessory files that facilitate running the algorithm at scale


	Which templates will help you? Let the development or documentation team know!


	For example: conda.yml with some default packages, run_script.sh






Working with code repositories like GitHub and GitLab


The MAAP GitLab Code repository

After creating your MAAP account, you can create a code repository by navigating to the MAAP GitLab account at https://repo.maap-project.org. This GitLab account is connected to your ADE workspaces automatically when signing into the ADE.

This example walks through cloning a repository into the ADE. Cloning a repository allows you to open, edit, and run files contained within the cloned repository. In this example, we look at cloning the “MAAP-Project/maap-documentation” Git repository [https://github.com/MAAP-Project/maap-documentation], so that you are able to experiment with the code examples contained within this user documentation.

When inside of a workspace, navigate to Git tab at the top of the Jupyter window. Click it to see the option to Clone.

[image: Git Clone]

We can also access the “Clone a repository” dialogue box by selecting the File Browser [image: File Browser] tab on the JupyterLab sidebar, browsing to the location where we want our Git repository, and using the Git button located near the File Browser icon (also to the left of the file list) and choosing “Clone a repository”. The dialogue box prompts you to enter the URI of the repository you wish to clone. For this example we enter “https://github.com/MAAP-Project/maap-documentation.git”.

For future reference, this URI can be found by visiting the GitHub site for the “MAAP-Project/maap-documentation” Git repository [https://github.com/MAAP-Project/maap-documentation] and clicking the Code button. [image: Code Button]

With the File Browser tab on the JupyterLab sidebar selected, a folder named “maap-documentation” should now appear at the location where you did the Git Clone operation. Folders for the various sections of the guide can be found in the “docs/source/” directory.

[image: docs/source/]

To open the IPython Notebook for an example, go to a section directory and double-click on appropriate “.ipynb” file. For more information about the using Git in Jupyterlab, see https://github.com/jupyterlab/jupyterlab-git .



Connecting to Github

Set personal access token: https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token



Working with the MAAP GitLab


Note

In order to register algorithms, the code must be in the MAAP GitLab.




Note

git can behave slowly and strangely over s3 bucket-based storage (i.e., my-private-bucket and my-public-bucket). It is recommended to set up your git-tracked repos on the root (somewhere inside of ~ or /projects).



The MAAP GitLab instance is located at https://repo.maap-project.org/ . Make sure you can access this from the browser using your MAAP (EarthData Login) credentials.

For NASA security reasons, MAAP cannot communicate with its GitLab instance over SSH. There also isn’t a username-password authentication option. Therefore, the recommended way to access MAAP repositories is to use GitLab Personal Access Tokens.


	In GitLab, in the top-right corner, click your user icon → “Preferences” [image: Preferences]


	In the “User settings” menu, navigate to “Access Tokens”. [image: Access Tokens]


	Create a new token with at least “read_repository” and “write_repository” permissions. [image: New Token Configuration]


	After clicking “create personal access token”, you’ll see a message like this pop up. Make sure you copy this token into a text file — you will not be able to access it again. [image: Access Token Popup Message]


	In the MAAP ADE, include this access token as part of the remote URL; e.g.,




git clone https://username:AccessToken@repo.maap-project.org/username/repo_name





For example:

git clone https://ashiklom:JJVimxhV8nmRNDqcCNr7@repo.maap-project.org/ashiklom/fireatlas





For security reasons, MAAP DPS jobs can only use code that is stored on the MAAP GitLab. Therefore, if you are using the MAAP DPS, you will want to make sure that you are pushing at least a copy of your code to the MAAP GitLab as well as any other code repository (e.g., GitHub, SMCE GitLab). Note that it’s possible to configure a repository to have multiple remotes — e.g.,

To add the maap remote and set the URL, use this:

git remote add maap https://username:AccessToken@repo.maap-project.org/username/repo_name





If you already have the remote called maap set up, you can set the remote URL using this instead:

git remote set-url maap https://username:AccessToken@repo.maap-project.org/username/repo_name





Then, you can use these commands to push your code and effectively synchronize between Github and MAAP GitLab (for algorithm registration):

Push to Github:

git push origin <branch name>





Push to MAAP GitLab:

git push maap <branch name>








Customizing your workspace environment

Your Jupyter workspace has a set of pre-installed libraries, depending on which Stack you selected. If you need libraries that are not pre-installed, we suggest using an environment manager; mamba is pre-installed to help with this.

Full documentation on configuring mamba (or conda) may be found in the System Reference Guide.





          

      

      

    

  

    
      
          
            
  
Running Algorithms at Scale

In order to run algorithms in the scaled-up cloud compute environment, they must first be “registered” in the Algorithm Catalog. This will make them available to other MAAP users, clearly define their inputs and outputs, and prepare them to be run easily in the Data Processing System (DPS).

[image: Running Algorithms overview in context diagram]


Register an Algorithm


Clone a test algorithm

This is an example algorithm you can use for this getting started guide: https://github.com/MAAP-Project/dps-unit-test

[image: Demo GitHub repo] In the repo there are a few files that you will typically have, or which are required:


	algorithm_config.yml is a required file that has a description of the inputs and outputs of the algorithm along with other parameters like the run command.


	run_test.sh is the run command for this algorithm. It is typical to have a shell script to tell the system how to run the algorithm and set some environmental variables.





	Make a new folder for your test algorithm. Open a terminal here (File > New > Terminal or use the blue “+” button above the Jupyter file browser). [image: New Folder]


	Copy the Github clone link from https://github.com/MAAP-Project/dps-unit-test [image: Copy .git link]


	Open the built-in Jupyter Github UI to the left of the file browser. Choose “Clone a Repository” and paste in the .git link you copied from the Github repository. [image: Clone a Repository] [image: Paste .git link]


	You should see a new folder created with the repo you cloned. If you browse to that folder and open up the Jupyter Github UI again, it will show you some info about that repo. [image: Algorithm folder was created] [image: Browse to folder] [image: Look at Github UI]


	If you want to make changes to the code and have your own copy of it to register, Clone the code into your MAAP GitLab. The git link to your code is indicated in the algorithm_config.yml. If you would prefer to skip this for now, leave the repository_url in algorithm_config.yml pointed at the “root” user (repository_url: https://repo.dit.maap-project.org/root/dps-unit-test.git)


	Rename the algorithm to personalize it. You do this by opening up the algorithm_config.yml file and changing the algo_name field. [image: Rename the Algorithm]






Register the algorithm


	Make sure code is ready and saved -> right click file -> “Register as MAS Algorithm” [image: Register as algorithm contextual menu]


	This automatically creates algorithm_config.yaml file with the presets if it is not already present (which, in this example case, it is present). There is only one for any directory. At this point you would normally edit the configuration file, then repeat step 1 and click “OK” to register. For this example we did this in step 5 in the previous section.


	Outputs (if any) should be written to a folder named outputs. There are none in the example we are using here.





Note

It can take some time to register an algorithm. You can determine if it has completed when you see it appear in the Jobs UI (see below) or in the menus under DPS/MAS Operations > List Algorithms.






Run the Algorithm as a Job and Monitor it


The Jobs UI

MAAP is configured to run up to 4,000 concurrent jobs. There are two additional ways to run a job: via the Jobs UI in the Launcher, or via a call to the maap-py Python library.

The Jobs UI will let you run and monitor jobs easily. You can find full documentation in the system reference guide for the Jobs UI. You can also find specific documentation on how to submit jobs and how to monitor jobs in the System Reference Guide FAQs.

[image: job_ui_access]

Some alternative methods of running the job are found below.



Pop-up


	Click DPS/MAS Operations menu -> Execute DPS Job


	Select your algorithm from the dropdown


	A new popup will ask for inputs; if it doesn’t take inputs, the popup will say so.


	Click OK again to view the ID for the job just submitted.




OR



maap-py

Import the maap-py library: if in Jupyter, click the small blue MAAP button in the top left corner to automatically insert code. If using a script, add these lines manually at the top of your notebook:

from maap.maap import MAAP
maap = MAAP()





Pass your algorithm’s name, version, required inputs, and username to the function maap.submitJob (identifier is job- algo_name:algo_version) Check result: maap.getJobResult()






          

      

      

    

  

    
      
          
            
  
Science Examples


Science Examples:


	HLSL30 Search and Composite
	Run This Notebook

	About the Data

	Additional Resources

	Importing and Installing Packages

	Creating an AOI

	Accessing the HLS Data

	Reading in HLS Data and Creating Composite

	Display Results





	GEDI_L2A Search and Visualize
	Searching for and accessing GEDI02_A data

	Explore

	Visualize





	GEDI_L2B Search and Visualize
	Run This Notebook

	About the Data

	Additional Resources

	Importing and Installing Packages

	Search Data Using an AOI

	Search using the EarthData Search Integration

	Inspect and Filter through the Data

	Create the Subset and Display the Data





	GEDI_L3 Search and Download
	Run This Notebook

	About the Data

	Additional Resources

	Importing and Installing Packages

	Download file from ORNL DAAC S3

	[Optional] Visualization using Rasterio

	[Optional] Overlay Raster Layer on top of Folium Map





	GEDI_L4A Subset and Visualize
	[Optional] Install Python Packages

	Obtain Username

	Define the Area of Interest

	[Optional] Visually Verify your AOI

	Submit a Job

	Get the Job’s Output File

	[Optional] Visually Verify the Results

	Generate contour lines

	Plot the contour lines in folium





	GEDI_L4B Search and Visualize
	Run This Notebook

	About the Data

	Additional Resources

	Importing Packages

	Search for the Collection and Associated Granules

	Accessing and Downloading the Granule from ORNL DAAC S3

	Plot the Data





	ICESat-02 ATL03 Subset and Visualize
	Import relevant python modules

	Decide on a subset of ATL03 data to load using spatial extent and date range and visualize extent using folium

	Search for available granules in the NASA CMR for the given spatial extent and date range and print the number of granules available.

	Read the H5 file to understand the data structure.

	Subset the data by required columns. In this case we need Latitude, Longitude, Photon Height and Along Track Distance.

	Show the subset data in a dataframe.

	Visualize photon heights with respect to along track distance for this H5 file (using inputs from geodataframe)





	AfriSAR Search and Visualize
	Description

	Declare your collection of interest

	Listing all the available collections

	Getting the collection of intrest ‘AfriSAR_AGB_Maps_1681’

	Use satsearch to discover items in the ‘AfriSAR_AGB_Maps_1681’ collection

	Adding items to an iterable

	Extracting s3 link and reading it with rioxarray

	Visualizing the read data with hvplot












          

      

      

    

  

    
      
          
            
  
HLSL30 Search and Composite

Authors: Nathan Thomas (GSFC/UMD), Sumant Jha (MSFC/USRA), Aimee Barciauskas (DevSeed), Alex Mandel (DevSeed)

Date: December 19, 2022

Description: In this tutorial, we will search the LPDAAC for Harmonized Landsat Sentinel-2 (HLS) 30m optical imagery that intersects an AOI. We will filter the catalog based on a cloud cover % and build a maximum-NDVI (Normalized Difference Vegetation Index) composite image, including a suite of popular indices, which will help give us an in-depth look at vegetation health.


Run This Notebook

To access and run this tutorial within MAAP’s Algorithm Development Environment (ADE), please refer to the “Getting started with the MAAP” [https://docs.maap-project.org/en/latest/getting_started/getting_started.html] section of our documentation.

Disclaimer: it is highly recommended to run a tutorial within MAAP’s ADE, which already includes packages specific to MAAP, such as maap-py. Running the tutorial outside of the MAAP ADE may lead to errors.



About the Data

Harmonized Landsat Sentinel-2 30m

Harmonized Landsat Sentinel-2 (HLS) was developed in response to a greater need for moderate-to-high resolution imagery to track various short-term landcover changes. Data are gathered by the Landsat-8 and Landsat-9 satellites, which carry the Operational Land Imager (OLI), as well as the Sentinel-2A and Sentinel-2B satellites, which carry the Multi-Spectral Instrument (MSI). With combined measurements from both the Landsat and Sentinel satellites, HLS imagery has global coverage with a spatial
resolution of 30m and a temporal resolution of 2-3 days. (Source: HLS Overview Page [https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/harmonized-landsat-sentinel-2-hls-overview/])

Note about HLS datasets: The Sentinel and Landsat assets have been “harmonized” in the sense that these products have been generated to use the same spatial resolution and grid system. Thus, the HLS S30 and L30 products can be used interchangeably in algorithms and are “stackable”. However, the individual band assets are specific to each provider.



Additional Resources


	HLSL30 v002 Dataset Landing Page [https://lpdaac.usgs.gov/products/hlsl30v002/]


	Landsat 8 Bands and Combinations Blog [https://www.l3harrisgeospatial.com/Learn/Blogs/Blog-Details/ArtMID/10198/ArticleID/15691/The-Many-Band-Combinations-of-Landsat-8]


	HLSS30 v002 Dataset Landing Page [https://lpdaac.usgs.gov/products/hlss30v002/]


	Sentinel 2 Bands and Combinations Blog [https://gisgeography.com/sentinel-2-bands-combinations/]


	Harmonized Landsat Sentinel-2 (HLS) User Guide [https://lpdaac.usgs.gov/documents/1326/HLS_User_Guide_V2.pdf]






Importing and Installing Packages

We will begin by installing any packages we need and importing the packages that we will use.

If needed the following packages should be installed:


[1]:





# cleanup data: removes data files that should be replaced
!rm -rf ./local-s3.json
!rm -rf ./sample.json

if False:
    !conda install -c conda-forge pystac-client -y
    !conda install -c conda-forge rio-tiler -y







Prerequisites


	geopandas


	folium


	pystac-client


	rio_tiler





[ ]:





# Uncomment the following lines to install these packages if you haven't already.
# !pip install geopandas
# !pip install folium
# !pip install pystac-client
# !pip install rio_tiler







We will now import a suite of packages that we will need:


[3]:





from maap.maap import MAAP
maap = MAAP(maap_host='api.maap-project.org')
import geopandas as gpd
import folium
import h5py
import pandas
import matplotlib
import matplotlib.pyplot as plt
from shapely.geometry import Polygon
from pystac_client import Client
import datetime
import os
import rasterio as rio
import boto3
import json
import botocore
from rasterio.session import AWSSession
from rio_tiler.io import COGReader
import numpy as np
import matplotlib
import matplotlib.pyplot as plt













/opt/conda/lib/python3.7/site-packages/geopandas/_compat.py:115: UserWarning: The Shapely GEOS version (3.11.1-CAPI-1.17.1) is incompatible with the GEOS version PyGEOS was compiled with (3.8.1-CAPI-1.13.3). Conversions between both will be slow.
  shapely_geos_version, geos_capi_version_string








Creating an AOI

To begin we will create a polygon in a forested area in Virginia, USA. We will do this by providing a number of lat/lon coordinates and creating an AOI.


[4]:





lon_coords = [-80, -80, -79., -79, -80]
lat_coords = [39, 38.2, 38.2, 39, 39]

polygon_geom = Polygon(zip(lon_coords, lat_coords))
crs = 'epsg:4326'
AOI = gpd.GeoDataFrame(index=[0], crs=crs, geometry=[polygon_geom])
AOI_bbox = AOI.bounds.iloc[0].to_list()







We can visualize this polygon using a folium interactive map.


[5]:





m = folium.Map([38.5,-79.3], zoom_start=9, tiles='OpenStreetMap')
folium.GeoJson(AOI).add_to(m)
folium.LatLngPopup().add_to(m)
m








[5]:






Make this Notebook Trusted to load map: File -> Trust Notebook
  
    

    GEDI_L2A Search and Visualize
    

    

    

    

    

    

    
 
  

    
      
          
            
  
GEDI_L2A Search and Visualize

This tutorial aims to provide information and code to help users get started working with the Global Ecosystem Dynamics Investigation (GEDI) Level 2A (GEDI02_A) product using the MAAP. Information about the GEDI02_A product may be found at the Data Set Landing Page [https://lpdaac.usgs.gov/products/gedi02_av002/]. We will start by importing the packages which will allow us to search for, access, explore, and visualize GEDI02_A product data.

Note: This Jupyter notebook utilizes the folium and pystac_client packages. If you do not have these packages installed, uncomment the lines and run the following code block.


[1]:





# !pip install folium
# !pip install pystac_client







For this tutorial, we will import boto3, folium, h5py, pandas, exists from os.path and Client from pystac_client as shown in the following codeblock.


[2]:





# Install packages
import boto3
import folium
import h5py
import os
import pandas as pd
from maap.maap import MAAP
from os.path import exists
from pystac_client import Client








Searching for and accessing GEDI02_A data

As of the time of the writing of this tutorial (2/10/23), two recommended ways for searching and accessing GEDI02_A data for use on the MAAP ADE are through the maap-stac as well as through NASA’s Common Metadata Repository (CMR). The methods for using these two ways are different and documented in the following two sub-sections.


Via maap-stac

To search for data from the GEDI02_A product, we will use the Client package to open the `maap-stac URL <https://stac.maap-project.org/>`__ and assign this to a variable (client in this case).


[3]:





# Open the maap-stac URL with the Client package
URL = 'https://stac.maap-project.org/'
client = Client.open(URL)







Now we can use the client specified above to search for data within the GEDI02_A product. Let’s search for the first item that is found in the GEDI02_A collection and assign this to a variable (search in this case).


[4]:





collection = 'GEDI02_A' # assign collection name
# Search for 1st item found in the collection
search = client.search(
    max_items = 1,
    collections = collection,
)







Let’s inspect this item using the get_all_items() function.


[5]:





# Inspect first item
item = search.get_all_items()[0]
item








[5]:







    
    

    
        
            
                Item: GEDI02_A_2021272190541_O15849_04_T03030_02_003_02_V002

            
            
                	ID: GEDI02_A_2021272190541_O15849_04_T03030_02_003_02_V002 



                    	Bounding Box: [-51.6720605, 52.2787758, 0.6119569, 136.2318287] 



                    	Datetime: 2021-09-29 19:05:41+00:00 




                        	links: [{'rel': 'http://esipfed.org/ns/fedsearch/1.1/s3#', 'href': 's3://nasa-maap-data-store/file-staging/nasa-map/GEDI02_A___002/2021.09.29/GEDI02_A_2021272190541_O15849_04_T03030_02_003_02_V002.h5', 'title': 'File to download', 'hreflang': 'en-US'}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/data#', 'href': 'https://search.earthdata.nasa.gov/search?q=C1908348134-LPDAAC_ECS', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/data#', 'href': 'https://e4ftl01.cr.usgs.gov/GEDI/GEDI02_A.002/', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/metadata#', 'href': 'https://lpdaac.usgs.gov/', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/metadata#', 'href': 'https://doi.org/10.5067/GEDI/GEDI02_A.002', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://lpdaac.usgs.gov/documents/982/gedi_l2a_dictionary_P003_v2.html', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://doi.org/10.5067/DOC/GEDI/GEDI_WF_ATBD.001', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://doi.org/10.5067/DOC/GEDI/GEDI_WFGEO_ATBD.001', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/metadata#', 'href': 'https://gedi.umd.edu/', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/metadata#', 'href': 'https://gedi.umd.edu/', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://lpdaac.usgs.gov/documents/998/GEDI02_UserGuide_V21.pdf', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://git.earthdata.nasa.gov/projects/LPDUR/repos/gedi-subsetter/browse', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://lpdaac.usgs.gov/resources/e-learning/accessing-and-analyzing-gedi-lidar-data-for-vegetation-studies/', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://lpdaac.usgs.gov/documents/989/GEDI_Quick_Guide_V2.pdf', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://lpdaac.usgs.gov/resources/e-learning/getting-started-gedi-l2a-version-2-data-python/', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://git.earthdata.nasa.gov/projects/LPDUR/repos/gedi-finder-tutorial-r/browse', 'hreflang': 'en-US', 'inherited': True}, {'rel': 'http://esipfed.org/ns/fedsearch/1.1/documentation#', 'href': 'https://git.earthdata.nasa.gov/projects/LPDUR/repos/gedi-finder-tutorial-python/browse', 'hreflang': 'en-US', 'inherited': True}] 


                        	title: SC:GEDI02_A.002:2533601921 


                        	updated: 2022-02-10T08:15:05.774000+00:00 


                        	datetime: 2021-09-29T19:05:41+00:00 


                        	polygons: [['0.5709932 52.2787758 -2.4837905 54.4316567 -5.5328295 56.5942654 -8.5732867 58.7822787 -11.5952411 61.0071903 -14.5949371 63.2858784 -17.6278042 65.5668278 -20.6452263 67.911168 -23.5849439 70.3953373 -26.4176399 73.0568996 -29.1328601 75.9163838 -31.7396895 78.9674042 -34.2609565 82.2009755 -36.7156154 85.6053658 -39.1137102 89.1901586 -41.4397104 92.9886682 -43.6451425 97.046529 -45.6716906 101.4222361 -47.4495791 106.1521866 -48.9231111 111.2374384 -50.0653904 116.639812 -50.8805866 122.2892713 -51.3958888 128.1072619 -51.6443466 134.0234704 -51.6720605 136.2060011 -51.5850527 136.2318287 -51.5574836 134.0519625 -51.3106524 128.1464018 -50.7980206 122.3417482 -49.9852616 116.6995877 -48.8450859 111.3099074 -47.3757449 106.2307827 -45.602624 101.5029249 -43.5796986 97.1298416 -41.3776405 93.072544 -39.0538705 89.274506 -36.6592349 85.6893964 -34.204794 82.2836814 -31.6866687 79.0502519 -29.0823064 75.9989759 -26.3695137 73.1396771 -23.5392267 70.4778269 -20.6015322 67.9929961 -17.5846501 65.6469727 -14.552509 63.3653664 -11.5536516 61.0860916 -8.5312307 58.8600711 -5.4923005 56.6723228 -2.4435753 54.5093005 0.6119569 52.3560804 0.5709932 52.2787758']] 


                        	time_end: 2021-09-29T20:38:35.000Z 


                        	concept_id: G1201851166-NASA_MAAP 


                        	dataset_id: GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002 


                        	time_start: 2021-09-29T19:05:41.000Z 


                        	browse_flag: False 


                        	data_center: NASA_MAAP 


                        	granule_size: 1901.12 


                        	day_night_flag: UNSPECIFIED 


                        	original_format: ECHO10 


                        	coordinate_system: GEODETIC 


                        	online_access_flag: False 


                        	producer_granule_id: GEDI02_A_2021272190541_O15849_04_T03030_02_003_02_V002.h5 


                        	collection_concept_id: C1201746156-NASA_MAAP 





            	stac_extensions: [] 



            



        
            
                Assets

            




    
    

    
        
            
                Asset: None

            
            
                	href: s3://nasa-maap-data-store/file-staging/nasa-map/GEDI02_A___002/2021.09.29/GEDI02_A_2021272190541_O15849_04_T03030_02_003_02_V002.h5 




                    	Media type: application/x-hdf5 



                    	Roles: ['data'] 



                    	Owner:  



            

        
    







    
    

    
        
            
                Asset: None

            
            
                	href: https://lpdaac.usgs.gov/ 





                    	Roles: ['metadata'] 



                    	Owner:  



            

        
    







    
    

    
        
            
                Asset: None

            
            
                	href: https://lpdaac.usgs.gov/documents/982/gedi_l2a_dictionary_P003_v2.html 





                    	Roles: ['documentation'] 



                    	Owner:  



            

        
    




        


        
            
                Links

            




    
    

    
        Link: 


        
            	Rel: collection 

            	Target: https://stac.maap-project.org/collections/GEDI02_A 


                	Media Type: application/json 



        


    







    
    

    
        Link: 


        
            	Rel: parent 

            	Target: https://stac.maap-project.org/collections/GEDI02_A 


                	Media Type: application/json 



        


    







    
    

    
        Link: 


            maap-stac


        
            	Rel: root 

            	Target: 
  
    

    GEDI_L2B Search and Visualize
    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
GEDI_L2B Search and Visualize

Authors: Samuel Ayers (UAH), Sumant Jha (MSFC/USRA), Anish Bhusal (UAH), Alex Mandel (DevSeed), Aimee Barciauskas (DevSeed)

Date: December 19, 2022

Description: In this tutorial, we will use the integrated Earthdata search function in MAAP Algorithm Development Environment (ADE) to search for GEDI L2B data for an area of interest. We will then download some of this data and read its attributes in preparation for some analysis. We will perform a spatial subset on the data to reduce data volumes, and then make some basic plots of our data.


Run This Notebook

To access and run this tutorial within MAAP’s Algorithm Development Environment (ADE), please refer to the “Getting started with the MAAP” [https://docs.maap-project.org/en/latest/getting_started/getting_started.html] section of our documentation.

Disclaimer: it is highly recommended to run a tutorial within MAAP’s ADE, which already includes packages specific to MAAP, such as maap-py. Running the tutorial outside of the MAAP ADE may lead to errors.



About the Data

GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V002

This dataset provides Global Ecosystem Dynamics Investigation (GEDI) Level 2 (L2) data, which has the purpose of extracting biophysical metrics and consists of Canopy Cover and Vertical Profile Metrics. These metrics are derived from the L1B waveform, and include canopy cover, Plant Area Index (PAI), Plant Area Volume Density (PAVD), and Foliage Height Diversity (FHD). GEDI is attached to the International Space Station (ISS) and collects data globally between 51.6° N and 51.6° S latitudes at
the highest resolution and densest sampling of any light detection and ranging (lidar) instrument in orbit to date; specifically, GEDI L2B data has a spatial resolution of 25m. (Source: GEDI L2B CMR Search [https://cmr.earthdata.nasa.gov/search/concepts/C1908350066-LPDAAC_ECS.html])



Additional Resources


	GEDI_L2B Version 2 Dataset Landing Page [https://lpdaac.usgs.gov/products/gedi02_bv002/]


	GEDI Level 2 Version 2 User Guide [https://lpdaac.usgs.gov/documents/998/GEDI02_UserGuide_V21.pdf]


	The GEDI Website [https://gedi.umd.edu/]






Importing and Installing Packages

We will begin by installing any packages we need and importing the packages that we will use.

Prerequisites


	geopandas


	folium





[ ]:





# Uncomment the following lines to install these packages if you haven't already.
# !pip install geopandas
# !pip install folium








[38]:





from maap.maap import MAAP
maap = MAAP(maap_host='api.maap-project.org')
import geopandas as gpd
import folium
import h5py
import pandas
import matplotlib
import matplotlib.pyplot as plt
import shapely
import os









Search Data Using an AOI

We will search and download GEDI L2B data using the bounding box of a vector AOI. Firstly, an AOI over the Shenandoah National Park will be created and then we will plot its location on a map.


[39]:





# Using bounding coordinates to create a polygon around Shenandoah National Park
lon_coords = [-78.32129105072025, -78.04618813890727, -78.72985973163064, -79.0158578082679, -78.32129105072025]
lat_coords = [38.88703610703791, 38.74909216350823, 37.88789051477522, 38.03177640342157, 38.88703610703791]

polygon_geom = shapely.geometry.polygon.Polygon(zip(lon_coords, lat_coords))
crs = 'epsg:4326'
AOI = gpd.GeoDataFrame(index=[0], crs=crs, geometry=[polygon_geom])







We can get the bounding box of the AOI so we can use it as a spatial limit on our data search. GeoPandas has a function for returning the spatial coordinates of a bounding box:


[40]:





# Get the bounding box of the shp
bbox = AOI.bounds
# print the bounding box coords
print('minx = ', bbox['minx'][0])
print('miny = ', bbox['miny'][0])
print('maxx = ', bbox['maxx'][0])
print('maxy = ', bbox['maxy'][0])













minx =  -79.0158578082679
miny =  37.88789051477522
maxx =  -78.04618813890727
maxy =  38.88703610703791






Let’s look at our AOI on an interactive map using folium.


[41]:





m = folium.Map(location=[38.5, -78], zoom_start=9, tiles='CartoDB positron')
geo_j = folium.GeoJson(data=AOI, style_function=lambda x: {'fillColor': 'orange'})
geo_j.add_to(m)
m








[41]:






Make this Notebook Trusted to load map: File -> Trust Notebook
  
    

    GEDI_L3 Search and Download
    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
GEDI_L3 Search and Download

Authors: Anish Bhusal (UAH), Sumant Jha (MSFC/USRA), Jamison French (DevSeed), Aimee Barciauskas (DevSeed), Alex Mandel (DevSeed)

Date: February 8, 2023

Description: In this tutorial, we will search for GEDI L3 data in NASA’s Earthdata Search, and then download a GeoTIFF file from the ORNL DAAC S3. We will then visualize the GeoTIFF file, which consists of canopy heights.


Run This Notebook

To access and run this tutorial within MAAP’s Algorithm Development Environment (ADE), please refer to the “Getting started with the MAAP” [https://docs.maap-project.org/en/latest/getting_started/getting_started.html] section of our documentation.

Disclaimer: it is highly recommended to run a tutorial within MAAP’s ADE, which already includes packages specific to MAAP, such as maap-py. Running the tutorial outside of the MAAP ADE may lead to errors.



About the Data

GEDI L3 Gridded Land Surface Metrics, Version 2

This dataset provides Global Ecosystem Dynamics Investigation (GEDI) Level 3 (L3) gridded mean canopy height, standard deviation of canopy height, mean ground elevation, standard deviation of ground elevation, and counts of laser footprints per 1-km x 1-km grid cells globally within -52 and 52 degrees latitude. GEDI is attached to the International Space Station (ISS) and collects data globally between 51.6° N and 51.6° S latitudes at the highest resolution and densest sampling of any light
detection and ranging (lidar) instrument in orbit to date.

GEDI L3 data products are gridded by spatially interpolating Level 2 footprint estimates of canopy cover, canopy height, Leaf Area Index (LAI), vertical foliage profile and their uncertainties. Level 2 data contains terrain elevation, canopy height, RH metrics and Leaf Area Index (LAI). The raw waveforms are collected by GEDI system and processed to provide canopy height and profile metrics. These metrics provide easy to use and interpret information about the vertical distribution of canopy
material.

Source: GEDI L3 Gridded Land Surface Metrics, Version 2 Data Set Landing Page [https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1952]

[image: Canopy]

Source: https://gedi.umd.edu/data/products/

Figure: Sample of GEDI lidar waveform (left). The light brown area under the curve represents the return energy from the canopy, while the dark brown area signifies the return from the underlying typography. The black line is cumulative return energey, starting from the bottom of the ground return (normalized to 0) to the top of canopy (normalized to 1). The diagram on the right shows the distribution of trees that produced the waveform.



Additional Resources


	GEDI L3 Gridded Land Surface Metrics, Version 2 User Guide [https://daac.ornl.gov/GEDI/guides/GEDI_L3_LandSurface_Metrics_V2.html]


	GEDI Overview Page, LPDAAC [https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/gedi-overview/]






Importing and Installing Packages

This tutorial assumes you’ve all packages installed. If you haven’t already, uncomment the following lines to install these packages.


[ ]:





# !pip install geopandas
# !pip install contextily
# !pip install backoff
# !pip install folium
# !pip install geojsoncontour








[16]:





from maap.maap import MAAP
import pandas as pd
import folium
from rasterio.plot import show
import rasterio
import boto3
import os







After importing necessary packages, the next step is to initialize MAAP constructor using api.maap-project.org as maap_host argument.


[17]:





maap = MAAP(maap_host="api.maap-project.org")







Now, the next step is to seach granules from the CMR. To generate following query, you can use EarthData search feature from MAAP ADE. Refer to this tutorial [https://docs.maap-project.org/en/latest/science/GEDI/SearchGEDI.html] for more info.


[18]:





results=maap.searchGranule(cmr_host='cmr.earthdata.nasa.gov',concept_id="C2153683336-ORNL_CLOUD", limit=1000)







The above query gives 1000 results by default. The number of necessary results can be changed using limit argument. We can view the GranuleUR from results using:


[19]:





[result['Granule']['GranuleUR'] for result in results]








[19]:







['GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_stddev_2019108_2020287_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_counts_2019108_2020287_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_counts_2019108_2021104_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_mean_2019108_2020287_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_stddev_2019108_2020287_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_stddev_2019108_2021104_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_stddev_2019108_2021104_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_mean_2019108_2020287_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_mean_2019108_2021104_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_mean_2019108_2021104_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_stddev_2019108_2021216_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_mean_2019108_2021216_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_stddev_2019108_2021216_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_mean_2019108_2021216_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_counts_2019108_2021216_002_02.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_mean_2019108_2022019_002_03.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_counts_2019108_2022019_002_03.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_mean_2019108_2022019_002_03.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_elev_lowestmode_stddev_2019108_2022019_002_03.tif',
 'GEDI_L3_LandSurface_Metrics_V2.GEDI03_rh100_stddev_2019108_2022019_002_03.tif']






Before downloading a particular tif, let’s catch the collection and file name for first item in results:


[20]:





granule_ur=results[0]['Granule']['GranuleUR'].split(".")
collection_name=granule_ur[0]
file_name=granule_ur[1]








[21]:





print(f"collection name: {collection_name} | file_name: {file_name}")













collection name: GEDI_L3_LandSurface_Metrics_V2 | file_name: GEDI03_elev_lowestmode_stddev_2019108_2020287_002_02








Download file from ORNL DAAC S3

To download the file from the source, temporary s3 credentials are required for maap package. You can explicitly request s3_cred_endpoint for the credentials. The code below wraps that request to get credentials and download the file to your workspace.


[22]:





def get_s3_creds(url):
    return maap.aws.earthdata_s3_credentials(url)

def get_s3_client(s3_cred_endpoint):
    creds=get_s3_creds(s3_cred_endpoint)
    boto3_session = boto3.Session(
            aws_access_key_id=creds['accessKeyId'],
            aws_secret_access_key=creds['secretAccessKey'],
            aws_session_token=creds['sessionToken']
    )
    return boto3_session.client("s3")

def download_s3_file(s3, bucket, collection_name, file_name):
    os.makedirs("/projects/gedi_l3", exist_ok=True) # create directories, as necessary
    download_path=f"/projects/gedi_l3/{file_name}.tif"
    s3.download_file(bucket, f"gedi/{collection_name}/data/{file_name}.tif", download_path)
    return download_path








[23]:





s3_cred_endpoint= 'https://data.ornldaac.earthdata.nasa.gov/s3credentials'
s3=get_s3_client(s3_cred_endpoint)








[24]:





bucket="ornl-cumulus-prod-protected"
download_path=download_s3_file(s3, bucket, collection_name, file_name)
download_path








[24]:







'/projects/gedi_l3/GEDI03_elev_lowestmode_stddev_2019108_2020287_002_02.tif'






Now, we have the file in our local workspace. It’s time to visualize it using rasterio package



[Optional] Visualization using Rasterio

The downloaded file is too big to read and visualize directly so we might need to scale it down and view it as a small thumbnail.


[25]:





def show_thumbnail(path):
    src=rasterio.open(path)
    oview = src.overviews(1)[0]
    thumbnail = src.read(1, out_shape=(1, int(src.height // oview), int(src.width // oview)))
    show(thumbnail)








[26]:





show_thumbnail(download_path)












[image: ../../_images/science_GEDI_GEDI_L3_27_0.png]






[Optional] Overlay Raster Layer on top of Folium Map

To properly visualize the canopy heights, we need to display the TIF image on the map. The TIF image file may be too memory and compute-intensive for the kernel causing the process to exit.


[27]:





# tif=rasterio.open(download_path)
# arr=tif.read()
# bounds=tif.bounds








[28]:





#import numpy as np

# x1,y1,x2,y2=bounds
# bbox=[(bounds.bottom, bounds.left), (bounds.top, bounds.right)]
# m=folium.Map(location=[14.59, 120.98], zoom_start=10)
# img = folium.raster_layers.ImageOverlay(image=np.moveaxis(arr, 0, -1), bounds=bbox, opacity=0.9, interactive=True, cross_origin=False, zindex=1)
# m











          

      

      

    

  

  
    

    GEDI_L4A Subset and Visualize
    

    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
GEDI_L4A Subset and Visualize


[Optional] Install Python Packages

This notebook contains some cells marked as optional, meaning that you can use this notebook without necessarily running such cells.

However, if you do wish to run the optional cells, you must install the following Python packages, which might not already be installed in your environment:


	geopandas: for reading your AOI (GeoJson file), as well as for reading the job output (GeoPackage file containing the subset)


	contextily: for visually verifying your AOI


	backoff: for repeatedly polling the job status (after submission) until the job has been completed (either successfully or not)


	folium: for visualizing your data on a Leaflet map


	geojsoncontour: for converting your matplotlib contour plots to geojson





[ ]:





# Uncomment the following lines to install these packages if you haven't already.
# !pip install geopandas
# !pip install contextily
# !pip install backoff
# !pip install folium
# !pip install geojsoncontour







A job can be submitted without these packages, but installing them in order to run the optional cells may make it more convenient for you to visually verify both your AOI and the subset output produced by your job.



Obtain Username


[18]:





from maap.maap import MAAP

maap = MAAP(maap_host="api.maap-project.org")
username = maap.profile.account_info()["username"]
username













WARNING:maap.maap:Unable to load config file from source maap.cfg
WARNING:maap.maap:Unable to load config file from source ./maap.cfg
WARNING:maap.maap:Unable to load config file from source /projects/maap.cfg







[18]:







'smk0033'








Define the Area of Interest

You may use either a publicly available GeoJSON file for your AOI, such as those available at geoBoundaries [https://www.geoboundaries.org], or you may create a custom GeoJSON file for your AOI. The following 2 subsections cover both cases.


Using a geoBoundary GeoJSON File

If your AOI is a publicly available geoBoundary, you can obtain the URL for the GeoJSON file using the function below. You simply need to supply an ISO3 value and a level. To find the appropriate ISO3 and level values, see the table on the geoBoundaries site [https://www.geoboundaries.org/index.html#getdata].


[19]:





import requests


def get_geo_boundary_url(iso3: str, level: int) -> str:
    response = requests.get(
        f"https://www.geoboundaries.org/api/current/gbOpen/{iso3}/ADM{level}"
    )
    response.raise_for_status()
    return response.json()["gjDownloadURL"]


# If using a geoBoundary, uncomment the following assignment, supply
# appropriate values for `<iso3>` and `<level>`, then run this cell.

# Example (Gabon level 0): get_geo_boundary("GAB", 0)

# aoi = get_geo_boundary_url("<iso3>", <level>)









Using a Custom GeoJSON File

Alternatively, you can make your own GeoJSON file for your AOI and place it within your my-public-bucket folder within the ADE.

Based upon where you place your GeoJSON file under my-public-bucket, you can construct the URL for a job’s aoi input value.

For example, if the relative path of your AOI GeoJSON file under my-public-bucket is path/to/my-aoi.geojson (avoid using whitespace in the path and filename), the URL you would supply as the value of a job’s aoi input would be the following (where {username} is replaced with your username as output from the previous section):

f"https://maap-ops-workspace.s3.amazonaws.com/shared/{username}/path/to/my-aoi.geojson"`





If this is the case, use the cell below.


[20]:





#aoi = f"https://maap-ops-workspace.s3.amazonaws.com/shared/{username}/langtang_np.geojson"

#for your convenience you can use this geoJSON file but if you have your own geojson, use the commented link as example format
aoi = f"https://maap-ops-workspace.s3.amazonaws.com/shared/anisbhsl/langtang_np.geojson"







This example uses the AOI of Gosaikunda Lake region inside Langtang National Park. You can also create your own GeoJSON file for your AOI using sites like geojson.io [https://geojson.io/]

[image: Gosaikunda]




[Optional] Visually Verify your AOI

If you want to visually verify your AOI before proceeding, you may run the following cell, if you have the geopandas and contextily Python packages installed.


[21]:





try:
    import geopandas as gpd
    import contextily as ctx
except:
    print(
        "If you wish to visually verify your AOI, "
        "you must install the `geopandas` and `contextily` packages."
    )
else:
    aoi_gdf = gpd.read_file(aoi)
    aoi_epsg4326 = aoi_gdf.to_crs(epsg=4326)
    ax = aoi_epsg4326.plot(figsize=(10, 5), alpha=0.3, edgecolor="red")
    ctx.add_basemap(ax, crs=4326)












[image: ../../_images/science_GEDI_GEDI_L4A_11_0.png]






Submit a Job

When supplying input values for a GEDI subsetting job, to use the default value for a field (where indicated), use a dash ("-") as the input value.


	aoi (required): URL to a GeoJSON file representing your area of interest, as explained above.


	doi: Digital Object Identifier (DOI) of the GEDI collection to subset, or a logical name representing such a DOI. Valid logical names: L1B, L2A, L2B, L4A


	columns: Comma-separated list of column names to include in the output file.


	query: Query expression for subsetting the rows in the output file.


	limit: Maximum number of GEDI granule data files to download (among those that intersect the specified AOI). (Default: 10000)




It is recommended to use maap-dps-worker-32gb queues when submitting a job with a large aoi.


[22]:





inputs = dict(
    aoi=aoi,
    doi="L4A",
    lat="lat_lowestmode",
    lon="lon_lowestmode",
    beams="coverage",
    columns="agbd, agbd_se, sensitivity, geolocation/sensitivity_a2, elev_lowestmode",
    query="l2_quality_flag == 1 and l4_quality_flag == 1 and sensitivity > 0.95 and `geolocation/sensitivity_a2` > 0.95",
    limit=10,
    temporal="-",
    output="gedi_subset.gpkg"
)

result = maap.submitJob(
    identifier="gedi-subset",
    algo_id="gedi-subset",
    version="0.6.0",
    queue="maap-dps-worker-32gb",
    username=username,
    **inputs,
)

job_id = result.id
job_id or result








[22]:







'72fca5ba-935a-49a2-802f-1dcfd3a5628c'








Get the Job’s Output File

Now that the job has been submitted, we can use the job_id to check the job status until the job has been completed.


[23]:





from urllib.parse import urlparse


def job_status_for(job_id: str) -> str:
    return maap.getJobStatus(job_id)


def job_result_for(job_id: str) -> str:
    return maap.getJobResult(job_id)[0]


def to_job_output_dir(job_result_url: str) -> str:
    return f"/projects/my-private-bucket/{job_result_url.split(f'/{username}/')[1]}"







If you have installed the backoff Python package, running the following cell will automatically repeatedly check your job’s status until the job has been completed. Otherwise, you will have to manually repeatedly rerun the following cell until the output is either 'Succeeded' or 'Failed'.


[24]:





try:
    import backoff
except:
    job_status = job_status_for(job_id)
else:
    # Check job status every 2 minutes
    @backoff.on_predicate(
        backoff.constant,
        lambda status: status not in ["Deleted", "Succeeded", "Failed"],
        interval=120,
    )
    def wait_for_job(job_id: str) -> str:
        return job_status_for(job_id)

    job_status = wait_for_job(job_id)

job_status













INFO:backoff:Backing off wait_for_job(...) for 0.9s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 18.1s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 49.5s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 6.8s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 42.4s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 26.7s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 86.6s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 117.0s (Accepted)
INFO:backoff:Backing off wait_for_job(...) for 17.9s (Running)
INFO:backoff:Backing off wait_for_job(...) for 95.7s (Running)







[24]:







'Succeeded'







[25]:





assert job_status == "Succeeded", (
    job_result_for(job_id)
    if job_status == "Failed"
    else f"Job {job_id} has not yet completed ({job_status}). Rerun the prior cell."
)

output_url = job_result_for(job_id)
output_dir = to_job_output_dir(output_url)
output_file = f"{output_dir}/gedi_subset.gpkg"
print(f"Your subset results are in the file {output_file}")













Your subset results are in the file /projects/my-private-bucket/dps_output/gedi-subset/0.6.0/2023/06/27/20/05/21/764642/gedi_subset.gpkg








[Optional] Visually Verify the Results

If you installed the geopandas Python package, you can visually verify the output file by running the following cell.


[26]:





try:
    import geopandas as gpd
    import matplotlib.pyplot as plt
except:
    print(
        "If you wish to visually verify your output file, "
        "you must install the `geopandas` package."
    )
else:
    gedi_gdf = gpd.read_file(output_file)
    print(gedi_gdf.head())
    sensitivity_colors = plt.cm.get_cmap("viridis_r")
    gedi_gdf.plot(markersize = 0.1)













                                            filename  \
0  GEDI04_A_2020064181434_O06951_02_T04323_02_002...
1  GEDI04_A_2020064181434_O06951_02_T04323_02_002...
2  GEDI04_A_2020064181434_O06951_02_T04323_02_002...
3  GEDI04_A_2020064181434_O06951_02_T04323_02_002...
4  GEDI04_A_2020064181434_O06951_02_T04323_02_002...

   geolocation/sensitivity_a2  sensitivity  elev_lowestmode    agbd_se  \
0                    0.959091     0.959091      3256.992432  11.047880
1                    0.968629     0.968629      3282.666748  11.057747
2                    0.962079     0.962079      3314.994141  11.052886
3                    0.962610     0.962610      3351.686035  11.045983
4                    0.968436     0.968436      3436.938721  11.047858

         agbd                   geometry
0  169.741974  POINT (85.34628 28.06473)
1  235.977890  POINT (85.34667 28.06512)
2  189.141037  POINT (85.34705 28.06550)
3  180.132187  POINT (85.34742 28.06589)
4  191.731232  POINT (85.34817 28.06666)











[image: ../../_images/science_GEDI_GEDI_L4A_20_1.png]






Generate contour lines

Create a lat, lon mesh grid with elevation as a depth parameter. As shown in the plot above, the lines don’t seem smooth. So we can apply linear or ‘cubic` interpolation to smoothen those missing points.


[27]:





geometry = gedi_gdf["geometry"]
elevation=gedi_gdf["elev_lowestmode"]








[28]:





lon = geometry.x
lat = geometry.y








[29]:





import numpy as np

x=np.linspace(min(lon), max(lon), 1000)
y=np.linspace(min(lat), max(lat), 1000)








[30]:





from scipy.interpolate import griddata

x_mesh, y_mesh = np.meshgrid(x,y)







You may experiment with nearest, linear, and cubic interpolation methods to see which gives more smooth results.


[31]:





#grid the elevation
z_mesh = griddata((lon, lat), elevation, (x_mesh, y_mesh), method='linear')








[32]:





colors=['blue','royalblue', 'navy','pink',  'mediumpurple',  'darkorchid',  'plum',  'm', 'mediumvioletred', 'palevioletred', 'crimson',
         'magenta','pink','red','yellow','orange', 'brown','green', 'darkgreen']
levels=len(colors)
contourf = plt.contourf(x_mesh, y_mesh, z_mesh, levels, alpha=0.5,  colors=colors, linestyles='None', vmin=elevation.min(), vmax=elevation.max())












[image: ../../_images/science_GEDI_GEDI_L4A_28_0.png]




[image: ContourPlot]

Now we need to plot this contour into an interactive map for better visualization.



Plot the contour lines in folium

You may need to install geojsoncontour, mapclassify, and folium, if you don’t already have them installed. We need to convert this contourf into geoJSON format.


[33]:





import folium
from folium import plugins
import branca
import geojsoncontour








[34]:





geojson = geojsoncontour.contourf_to_geojson(
    contourf=contourf,
    min_angle_deg=3.0,
    ndigits=5,
    stroke_width=1,
    unit='ft',
    fill_opacity=0.1,
)








[35]:





#create map view
m = folium.Map([lat.mean(), lon.mean()], zoom_start=12, tiles="OpenStreetMap")

folium.GeoJson(
    geojson,
    style_function=lambda x:{
        'color': x['properties']['stroke'],
        'weight':    x['properties']['stroke-width'],
        'fillColor': x['properties']['fill'],
        'opacity':   0.5,
    }
).add_to(m)

cm = branca.colormap.LinearColormap(colors, vmin=elevation.min(), vmax=elevation.max()).to_step(levels)
cm.caption='Elevation (in m)'
m.add_child(cm)

#legend
plugins.Fullscreen(position='topright', force_separate_button=True).add_to(m)








[35]:







<folium.plugins.fullscreen.Fullscreen at 0x7f356182c4c0>







[36]:





m








[36]:






Make this Notebook Trusted to load map: File -> Trust Notebook
  
    

    GEDI_L4B Search and Visualize
    

    

    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
GEDI_L4B Search and Visualize

Authors: Nikita Susan (UAH), Aimee Barciauskas (DevSeed), Sumant Jha (MSFC/USRA), Alex Mandel (DevSeed)

Date: April 7, 2023

Description: In this example, we demonstrate how to access the GEDI L4B collection and granule data on the MAAP ADE, and then visualize the data using matplotlib.


Run This Notebook

To access and run this tutorial within MAAP’s Algorithm Development Environment (ADE), please refer to the “Getting started with the MAAP” [https://docs.maap-project.org/en/latest/getting_started/getting_started.html] section of our documentation.

Disclaimer: it is highly recommended to run a tutorial within MAAP’s ADE, which already includes packages specific to MAAP, such as maap-py. Running the tutorial outside of the MAAP ADE may lead to errors.



About the Data

GEDI L4B Gridded Aboveground Biomass Density, Version 2

This dataset provides Global Ecosystem Dynamics Investigation (GEDI) Level 4 (L4) data, which has the purpose of providing mean aboveground biomass density (AGBD) and consists of the GEDI_L4A and GEDI_L4B collections. GEDI_L4B uses a sample present within each 1km cell to statistically infer mean AGBD. GEDI is attached to the International Space Station (ISS) and collects data globally between 51.6° N and 51.6° S latitudes at the highest resolution and densest sampling of any light detection and
ranging (lidar) instrument in orbit to date; specifically, GEDI L4B data has a spatial resolution of 1km. (Source: GEDI_L4B Version 2 User Guide [https://daac.ornl.gov/GEDI/guides/GEDI_L4B_Gridded_Biomass.html])



Additional Resources


	GEDI_L4B Version 2 Dataset Landing Page [https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2017]


	The GEDI Website [https://gedi.umd.edu/]


	Earthdata Search [https://search.earthdata.nasa.gov/search?q=GEDI_L4B&lat=49.70652984841501&long=-102.041015625&zoom=6]






Importing Packages

Within your Jupyter Notebook, start by importing the maap package. Then invoke the MAAP constructor, setting the maap_host argument to ‘api.maap-project.org’.


[22]:





from maap.maap import MAAP
from matplotlib import pyplot
import os
import pprint
import rasterio
import boto3

maap = MAAP(maap_host="api.maap-project.org")









Search for the Collection and Associated Granules

Now, we will search for the collection using the collection short name:


[23]:





collection = maap.searchCollection(cmr_host='cmr.earthdata.nasa.gov', short_name="GEDI_L4B_Gridded_Biomass_2017", limit=100)
print(collection)













[{'concept-id': 'C2244602422-ORNL_CLOUD', 'revision-id': '7', 'format': 'application/echo10+xml', 'Collection': {'ShortName': 'GEDI_L4B_Gridded_Biomass_2017', 'VersionId': '2', 'InsertTime': '2022-03-29T00:00:00Z', 'LastUpdate': '2023-06-12T20:25:17Z', 'LongName': 'GEDI L4B Gridded Aboveground Biomass Density, Version 2', 'DataSetId': 'GEDI L4B Gridded Aboveground Biomass Density, Version 2', 'Description': "This Global Ecosystem Dynamics Investigation (GEDI) L4B product provides 1 km x 1 km (1 km,  hereafter) estimates of mean aboveground biomass density (AGBD) based on observations from mission week 19 starting on 2019-04-18 to mission week 138 ending on 2021-08-04. The GEDI L4A Footprint Biomass product converts each high-quality waveform to an AGBD prediction, and the L4B product uses the sample present within the borders of each 1 km cell to statistically infer mean AGBD. The gridding procedure is described in the GEDI L4B Algorithm Theoretical Basis Document (ATBD). Patterson et al. (2019) describes the hybrid model-based mode of inference used in the L4B product. Corresponding 1 km estimates of the standard error of the mean are also provided in the L4B product. Uncertainty is due to both GEDI's sampling of the 1 km area (as opposed to making wall-to-wall observations) and the fact that L4A biomass values are modeled in a process subject to error instead of measured in a process that may be assumed to be error-free.", 'DOI': {'DOI': '10.3334/ORNLDAAC/2017', 'Authority': 'https://doi.org'}, 'Orderable': 'false', 'Visible': 'true', 'RevisionDate': '2022-03-29T00:00:00Z', 'ProcessingLevelId': '4', 'ProcessingLevelDescription': 'model products', 'ArchiveCenter': 'ORNL_DAAC', 'CitationForExternalPublication': 'Dubayah, R.O., J. Armston, S.P. Healey, Z. Yang, P.L. Patterson, S. Saarela, G. Stahl, L. Duncanson, and J.R. Kellner. 2022. GEDI L4B Gridded Aboveground Biomass Density, Version 2. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2017', 'CollectionState': 'COMPLETE', 'MaintenanceAndUpdateFrequency': 'As needed', 'UseConstraints': {'LicenseURL': {'URL': 'https://science.nasa.gov/earth-science/earth-science-data/data-information-policy', 'Description': 'License URL for data use policy', 'Type': 'Data Use Policy', 'MimeType': 'text/html'}}, 'Price': '0', 'DataFormat': 'GeoTIFF', 'SpatialKeywords': {'Keyword': 'GLOBAL LAND'}, 'Temporal': {'RangeDateTime': {'BeginningDateTime': '2019-04-18T00:00:00Z', 'EndingDateTime': '2021-08-04T23:59:59Z'}}, 'Contacts': {'Contact': {'Role': 'ARCHIVER', 'OrganizationName': 'ORNL_DAAC', 'OrganizationAddresses': {'Address': {'StreetAddress': 'ORNL DAAC User Services Office, P.O. Box 2008, MS 6407, Oak Ridge National Laboratory', 'City': 'Oak Ridge', 'StateProvince': 'Tennessee', 'PostalCode': '37831-6407', 'Country': 'USA'}}, 'OrganizationPhones': {'Phone': {'Number': '(865) 241-3952', 'Type': 'Direct Line'}}, 'OrganizationEmails': {'Email': 'uso@daac.ornl.gov'}}}, 'ScienceKeywords': {'ScienceKeyword': [{'CategoryKeyword': 'EARTH SCIENCE', 'TopicKeyword': 'BIOSPHERE', 'TermKeyword': 'ECOSYSTEMS', 'VariableLevel1Keyword': {'Value': 'TERRESTRIAL ECOSYSTEMS'}}, {'CategoryKeyword': 'EARTH SCIENCE', 'TopicKeyword': 'BIOSPHERE', 'TermKeyword': 'VEGETATION', 'VariableLevel1Keyword': {'Value': 'BIOMASS'}}, {'CategoryKeyword': 'EARTH SCIENCE', 'TopicKeyword': 'SPECTRAL/ENGINEERING', 'TermKeyword': 'LIDAR', 'VariableLevel1Keyword': {'Value': 'LIDAR WAVEFORM'}}]}, 'Platforms': {'Platform': {'ShortName': 'ISS', 'LongName': 'MUSES', 'Type': 'Space Stations/Crewed Spacecraft', 'Instruments': {'Instrument': {'ShortName': 'GEDI', 'LongName': 'Global Ecosystem Dynamics Investigation'}}}}, 'Campaigns': {'Campaign': {'ShortName': 'GEDI', 'LongName': 'Global Ecosystem Dynamics Investigation'}}, 'OnlineAccessURLs': {'OnlineAccessURL': {'URL': 'https://daac.ornl.gov/gedi/GEDI_L4B_Gridded_Biomass/', 'URLDescription': 'This link allows direct data access via Earthdata login'}}, 'OnlineResources': {'OnlineResource': [{'URL': 'https://daac.ornl.gov/GEDI/guides/GEDI_L4B_Gridded_Biomass.html', 'Description': 'ORNL DAAC Data Set Documentation', 'Type': "USER'S GUIDE"}, {'URL': 'https://doi.org/10.3334/ORNLDAAC/2017', 'Description': 'Data set Landing Page DOI URL', 'Type': 'DATA SET LANDING PAGE'}, {'URL': 'https://data.ornldaac.earthdata.nasa.gov/public/gedi/GEDI_L4B_Gridded_Biomass/comp/GEDI_L4B_ATBD_v1.0.pdf', 'Description': 'GEDI L4B Gridded Aboveground Biomass Density, Version 2: GEDI_L4B_ATBD_v1.0.pdf', 'Type': 'GENERAL DOCUMENTATION'}, {'URL': 'https://data.ornldaac.earthdata.nasa.gov/public/gedi/GEDI_L4B_Gridded_Biomass/comp/GEDI_L4B_Gridded_Biomass.pdf', 'Description': 'GEDI L4B Gridded Aboveground Biomass Density, Version 2: GEDI_L4B_Gridded_Biomass.pdf', 'Type': 'GENERAL DOCUMENTATION'}, {'URL': 'https://daac.ornl.gov/GEDI/guides/GEDI_L4B_Gridded_Biomass_Fig1.png', 'Description': 'Gridded mean aboveground biomass density (top) and standard error of the mean (bottom).', 'Type': 'GET RELATED VISUALIZATION', 'MimeType': 'image/png'}, {'URL': 'https://gedi.umd.edu', 'Description': 'GEDI Project Site', 'Type': 'PROJECT HOME PAGE', 'MimeType': 'text/html'}, {'URL': 'https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=2017', 'Description': 'Web Coverage Service for this collection.', 'Type': 'WEB COVERAGE SERVICE (WCS)', 'MimeType': 'application/gml+xml'}]}, 'Spatial': {'SpatialCoverageType': 'HORIZONTAL', 'HorizontalSpatialDomain': {'Geometry': {'CoordinateSystem': 'CARTESIAN', 'BoundingRectangle': {'WestBoundingCoordinate': '-180.00', 'NorthBoundingCoordinate': '52.00', 'EastBoundingCoordinate': '180.00', 'SouthBoundingCoordinate': '-52.00'}}}, 'GranuleSpatialRepresentation': 'CARTESIAN'}, 'DirectDistributionInformation': {'Region': 'us-west-2', 'S3BucketAndObjectPrefixName': 's3://ornl-cumulus-prod-protected/gedi/GEDI_L4B_Gridded_Biomass/', 'S3CredentialsAPIEndpoint': 'https://data.ornldaac.earthdata.nasa.gov/s3credentials', 'S3CredentialsAPIDocumentationURL': 'https://data.ornldaac.earthdata.nasa.gov/s3credentialsREADME'}}}]






Next, we can search for granules using the searchGranule function and the concept ID from our collection search above:


[24]:





COLLECTIONID = collection[0]['concept-id']
results = maap.searchGranule(cmr_host='cmr.earthdata.nasa.gov',concept_id=COLLECTIONID)  # COLLECTIONID 'C2244602422-ORNL_CLOUD'
print(f'Got {len(results)} results')
results[0]['Granule']













Got 10 results







[24]:







{'GranuleUR': 'GEDI_L4B_Gridded_Biomass.GEDI04_B_MW019MW138_02_002_05_R01000M_PS.tif',
 'InsertTime': '2022-03-29T00:00:00Z',
 'LastUpdate': '2023-04-10T21:58:24Z',
 'Collection': {'ShortName': 'GEDI_L4B_Gridded_Biomass_2017',
  'VersionId': '2'},
 'DataGranule': {'DataGranuleSizeInBytes': '20103343',
  'SizeMBDataGranule': '20.103343',
  'Checksum': {'Value': '025a141348906d5e612262218c496a2d468446ca30875439be6651d851bfbe23',
   'Algorithm': 'SHA-256'},
  'DayNightFlag': 'BOTH',
  'ProductionDateTime': '2022-03-29T00:00:00Z'},
 'Temporal': {'RangeDateTime': {'BeginningDateTime': '2019-04-18T00:00:00Z',
   'EndingDateTime': '2021-08-04T23:59:59Z'}},
 'Spatial': {'HorizontalSpatialDomain': {'Geometry': {'BoundingRectangle': {'WestBoundingCoordinate': '-180',
     'NorthBoundingCoordinate': '52',
     'EastBoundingCoordinate': '180',
     'SouthBoundingCoordinate': '-52'}}}},
 'MeasuredParameters': {'MeasuredParameter': [{'ParameterName': 'LIDAR WAVEFORM'},
   {'ParameterName': 'BIOMASS'},
   {'ParameterName': 'TERRESTRIAL ECOSYSTEMS'}]},
 'Platforms': {'Platform': {'ShortName': 'ISS',
   'Instruments': {'Instrument': {'ShortName': 'GEDI'}}}},
 'Campaigns': {'Campaign': {'ShortName': 'GEDI'}},
 'Price': '0',
 'OnlineAccessURLs': {'OnlineAccessURL': [{'URL': 'https://data.ornldaac.earthdata.nasa.gov/protected/gedi/GEDI_L4B_Gridded_Biomass/data/GEDI04_B_MW019MW138_02_002_05_R01000M_PS.tif',
    'URLDescription': 'Download GEDI04_B_MW019MW138_02_002_05_R01000M_PS.tif',
    'MimeType': 'image/tiff'},
   {'URL': 'https://data.ornldaac.earthdata.nasa.gov/public/gedi/GEDI_L4B_Gridded_Biomass/data/GEDI04_B_MW019MW138_02_002_05_R01000M_PS.tif.sha256',
    'URLDescription': 'Download GEDI04_B_MW019MW138_02_002_05_R01000M_PS.tif.sha256'},
   {'URL': 's3://ornl-cumulus-prod-protected/gedi/GEDI_L4B_Gridded_Biomass/data/GEDI04_B_MW019MW138_02_002_05_R01000M_PS.tif',
    'URLDescription': 'This link provides direct download access via S3 to the granule',
    'MimeType': 'image/tiff'}]},
 'OnlineResources': {'OnlineResource': [{'URL': 'https://daac.ornl.gov/GEDI/guides/GEDI_L4B_Gridded_Biomass.html',
    'Description': 'ORNL DAAC Data Set Documentation',
    'Type': "USER'S GUIDE"},
   {'URL': 'https://doi.org/10.3334/ORNLDAAC/2017',
    'Description': 'Data set Landing Page DOI URL',
    'Type': 'DATA SET LANDING PAGE'},
   {'URL': 'https://daac.ornl.gov/daacdata/gedi/GEDI_L4B_Gridded_Biomass/comp/GEDI_L4B_ATBD_v1.0.pdf',
    'Description': 'Data Set Documentation',
    'Type': 'GENERAL DOCUMENTATION'},
   {'URL': 'https://daac.ornl.gov/daacdata/gedi/GEDI_L4B_Gridded_Biomass/comp/GEDI_L4B_Gridded_Biomass.pdf',
    'Description': 'Data Set Documentation',
    'Type': 'GENERAL DOCUMENTATION'},
   {'URL': 'https://webmap.ornl.gov/sdat/pimg/2017_9.png',
    'Description': 'GEDI L4B Gridded Prediction Stratum, Version 2, Mission Weeks 19-138',
    'Type': 'BROWSE',
    'MimeType': 'image/png'},
   {'URL': 'https://data.ornldaac.earthdata.nasa.gov/s3credentials',
    'Description': 'api endpoint to retrieve temporary credentials valid for same-region direct s3 access',
    'Type': 'VIEW RELATED INFORMATION'}]},
 'Orderable': 'false',
 'DataFormat': 'COG'}








Accessing and Downloading the Granule from ORNL DAAC S3

Before downloading, we’ll get the collection and file name:


[25]:





granule_ur=results[0]['Granule']['GranuleUR'].split(".")
collection_name=granule_ur[0]
file_name=granule_ur[1]

print(collection_name)
print(file_name)













GEDI_L4B_Gridded_Biomass
GEDI04_B_MW019MW138_02_002_05_R01000M_PS






Now we’ll proceed to get tempory s3 credentials, and then download the tif file to our workspace:


[26]:





def get_s3_creds(url):
    return maap.aws.earthdata_s3_credentials(url)

def get_s3_client(s3_cred_endpoint):
    creds=get_s3_creds(s3_cred_endpoint)
    boto3_session = boto3.Session(
            aws_access_key_id=creds['accessKeyId'],
            aws_secret_access_key=creds['secretAccessKey'],
            aws_session_token=creds['sessionToken']
    )
    return boto3_session.client("s3")

def download_s3_file(s3, bucket, collection_name, file_name):
    os.makedirs("/projects/gedi_l4b", exist_ok=True) # create directories, as necessary
    download_path=f"/projects/gedi_l4b/{file_name}.tif"
    s3.download_file(bucket, f"gedi/{collection_name}/data/{file_name}.tif", download_path)
    return download_path








[27]:





s3